05) O segredo dos numeros...
Razão Áurea(tradução de Marco Shinobu Matsumura; Record; 336 páginas; 46,90 reais), do astrofísico israelense (nascido na Romênia) Mario Livio
Veja, edição 1978, 18 de outubro de 2006
Leia trecho do livro Razão Áurea, de Mario Livio
PRELÚDIO PARA UM NÚMERO
Inumeráveis são as maravilhas do mundo.
Sófocles (495-405 a.C.)
O famoso físico britânico lorde Kelvin (William Thomson; 1824-1907), em cuja homenagem foram batizados os graus da escala de temperatura absoluta, disse certa vez em uma conferência: "Quando não podemos expressar algo em números, nosso conhecimento é de um tipo escasso e insatisfatório." Kelvin estava, obviamente, se referindo ao conhecimento exigido para o avanço da ciência. Mas números e matemática têm a curiosa propensão a contribuir até para o entendimento de coisas que são, ou pelo menos parecem ser, extremamente distantes da ciência. Em O mistério de Marie Rogêt, de Edgar Allan Poe, o famoso detetive Auguste Dupin diz: "Nós fazemos da sorte uma questão de cálculo absoluto. Submetemos o não-procurado e o não-imaginado às fórmulas matemáticas das escolas." Num nível ainda mais simples, considere o seguinte problema que o leitor pode ter encontrado ao se preparar para uma festa: há uma barra de chocolate composta de doze pedaços; quantas quebras são necessárias para separar todos os pedaços? A resposta é, na verdade, mais simples do que você pode ter pensado e não envolve quase nenhum cálculo. Toda vez que se faz uma quebra, tem-se um pedaço a mais do que antes. Portanto, se você precisa terminar com doze pedaços, terá que quebrar onze vezes. (Verifique isso por si mesmo.) De modo mais geral, qualquer que seja o número de pedaços que formam a barra de chocolate, o número de quebras é sempre um a menos que o número de pedaços.
Mesmo que você não seja um apreciador de chocolate, perceberá que esse exemplo demonstra uma regra matemática simples que pode ser aplicada em muitas outras circunstâncias. Mas, além das propriedades, fórmulas e regras matemáticas (muitas das quais sempre acabamos esquecendo), existem alguns números especiais que são tão onipresentes que nunca deixam de nos surpreender. O mais famoso deles é o número Pi (π), que é a razão entre a circunferência de qualquer círculo e seu diâmetro. O valor de Pi, 3,14159..., tem fascinado muitas gerações de matemáticos. Embora tenha sido originalmente definido na geometria, o Pi aparece muito freqüente e inesperadamente no cálculo de probabilidades. Um exemplo famoso é conhecido como a Agulha de Buffon, em homenagem ao matemático francês George-Louis Leclerc, conde de Buffon (1707-1788), que, em 1777, propôs e resolveu o seguinte problema matemático. Leclerc perguntou: suponha que você tenha uma grande folha de papel no chão, pautada com linhas retas paralelas separadas por uma distância fixa. Uma agulha de comprimento exatamente igual ao espaçamento entre as linhas é jogada ao acaso sobre o papel. Qual é a probabilidade de que a agulha caia de tal maneira que cruze uma das linhas (por exemplo, como na Figura 1)? Surpreendentemente, a resposta é o número 2/π. Portanto, em princípio, você pode avaliar π repetindo esta experiência muitas vezes e observando em que fração do total de jogadas você obtém uma interseção. (Mas existem maneiras menos tediosas de encontrar o valor de Pi.) Hoje em dia, Pi se tornou uma palavra tão familiar que até inspirou o cineasta Darren Aronofsky a fazer, em 1998, um thriller intelectual com esse título.
Menos conhecido que o Pi é um outro número, o Fi (Φ), que, em muitos aspectos, é ainda mais fascinante. Suponha que eu lhe pergunte: o que o encantador arranjo de pétalas numa rosa vermelha, o famoso quadro "O Sacramento da Última Ceia", de Salvador Dalí, as magníficas conchas espirais de moluscos e a procriação de coelhos têm em comum? É difícil de acreditar, mas esses exemplos bem díspares têm em comum um certo número, ou proporção geométrica, conhecido desde a Antiguidade, um número que no século XIX recebeu o título honorífico de "Número Áureo", "Razão Áurea" e "Seção Áurea". Um livro publicado na Itália no começo do século XVI chegou a chamar essa razão de "Proporção Divina".
No dia-a-dia, usamos a palavra "proporção" ou para a relação comparativa entre partes de coisas com respeito a tamanho ou quantidade, ou quando queremos descrever uma relação harmoniosa entre diferentes partes. Na matemática, o termo "proporção" é usado para descrever uma igualdade do tipo: nove está para três assim como seis está para dois. Como veremos, a Razão Áurea nos fornece uma intrigante mistura das duas acepções, já que, embora seja matematicamente definida, considera-se que revela qualidades agradavelmente harmoniosas.
A primeira definição clara do que mais tarde se tornou conhecido como a Razão Áurea foi dada por volta de 300 a.C. pelo fundador da geometria como sistema dedutivo formalizado, Euclides de Alexandria. Retornaremos a Euclides e suas fantásticas realizações no Capítulo 4, mas agora quero observar apenas que é tão grande a admiração inspirada por Euclides que, em 1923, a poetisa Edna St. Vincent Millay escreveu um poema intitulado "Somente Euclides viu a Beleza Nua". Na verdade, até as notas de aula de Millay do seu curso de geometria euclidiana foram preservadas. Euclides definiu uma proporção derivada da simples divisão de uma linha no que ele chamou de sua "razão extrema e média". Nas palavras de Euclides:
Diz-se que uma linha reta é cortada na razão extrema e média quando, assim como a linha toda está para o maior segmento, o maior segmento está para o menor.
A C B
Figura 2
Em outras palavras, se observarmos a Figura 2, a linha AB certamente é maior que o segmento AC. Ao mesmo tempo, o segmento AC é maior que o CB. Se a razão do comprimento de AC para o comprimento de CB for igual à razão de AB para AC, então a linha foi cortada na razão extrema e média, ou numa Razão Áurea.
Quem poderia imaginar que essa divisão de linha aparentemente tão inocente, que Euclides definiu com objetivos puramente geométricos, poderia ter conseqüências em temas que vão do arranjo de folhas em botânica à estrutura de galáxias que contêm bilhões de estrelas, ou da matemática às artes? A Razão Áurea nos fornece, portanto, um maravilhoso exemplo do sentimento de total espanto que o famoso físico Albert Einstein (1879-1955) valorizava tanto. Nas palavras do próprio Einstein: "A melhor coisa que podemos vivenciar é o mistério. Ele é a emoção fundamental que está no berço da ciência e da arte verdadeiras. Aquele que não o conhece e não mais se maravilha, não sente mais o deslumbramento, vale o mesmo que um morto, que uma vela apagada."
Como veremos calculado neste livro, o valor exato da Razão Áurea (a razão de AC para CB na Figura 2) é o número que nunca termina e nunca se repete 1,6180339887..., e esses números que nunca terminam têm intrigado os homens desde a Antiguidade. Diz uma história que quando o matemático grego Hipasos de Metaponto descobriu, no século V a.C., que a Razão Áurea é um número que não é nem inteiro (como os familiares 1, 2, 3...) nem razão de dois números inteiros (como as frações 1/2, 2/3, 3/4,..., conhecidos coletivamente como números racionais), isso deixou totalmente chocados os outros seguidores do famoso matemático Pitágoras (os pitagóricos). A visão de mundo dos pitagóricos (que descreveremos em detalhe no Capítulo 2) era baseada numa admiração extrema pelos arithmos — as propriedades intrínsecas dos números inteiros ou suas razões — e seu suposto papel no Cosmo. A descoberta de que existiam números como a Razão Áurea que continuam para sempre sem exibir qualquer repetição ou padrão causou uma verdadeira crise filosófica. Reza a lenda que, aturdidos com a estupenda descoberta, os pitagóricos sacrificaram, apavorados, cem bois, embora isso pareça ser bastante improvável, já que os pitagóricos eram estritamente vegetarianos. Devo enfatizar neste ponto que muitas dessas histórias são baseadas em material histórico insuficientemente documentado. A data exata da descoberta de números que não são inteiros nem frações, conhecidos como números irracionais, não é conhecida com grau algum de certeza. Mesmo assim, alguns pesquisadores situam a descoberta no século V a.C., o que é pelo menos coerente com a datação das histórias que acabamos de contar. O que é claro é que os pitagóricos basicamente acreditavam que a existência de tais números era tão horrível que devia (a existência) representar algum tipo de erro cósmico, algo que deveria ser suprimido e guardado em segredo.
O fato de a Razão Áurea não poder ser expressa como uma fração (como um número racional) significa simplesmente que a razão entre os dois comprimentos AC e CB na Figura 2 não pode ser expressa como uma fração. Em outras palavras, por mais que procuremos, jamais encontraremos uma medida cujo valor, multiplicado, digamos, por 31, coincida com a medida de AC, e multiplicado por 19 coincida com a de CB. Dois comprimentos com esta propriedade são chamados de incomensuráveis. A descoberta de que a Razão Áurea é um número irracional, portanto, era, ao mesmo tempo, a descoberta da incomensurabilidade. Em Sobre a vida pitagórica (cerca de 300 d.C.), o filósofo e historiador Iâmblico, um descendente de uma nobre família da Síria, descreve a violenta reação a essa descoberta:
"Eles diziam que o primeiro [humano] a revelar a natureza da comensurabilidade e da incomensurabilidade para aqueles que não eram dignos de compartilhar a teoria era tão odiado que não só foi banido da associação e do modo de vida [pitagórico], como também teve seu túmulo construído, como se o antigo colega tivesse sido apartado da vida entre o gênero humano."
Na literatura matemática profissional, o símbolo habitual para a Razão Áurea é a letra grega tau (t, do grego tomή, to-mž, que significa "o corte" ou "a seção"). Entretanto, no início do século XX, o matemático americano Mark Barr deu à razão o nome de Fi (Φ), a primeira letra grega no nome de Fídias, o grande escultor grego que viveu entre 490 e 430 a.C. As maiores realizações de Fídias foram o "Partenon de Atenas" e o "Zeus" no templo de Olímpia. Tradicionalmente, considera-se também que ele foi o responsável por outras esculturas do Partenon, embora seja bastante provável que muitas delas, na verdade, tenham sido feitas por seus alunos e assistentes. Barr decidiu homenagear o escultor porque alguns historiadores da arte sustentavam que Fídias fazia uso freqüente e meticuloso da Razão Áurea nas suas esculturas. (Examinaremos detalhadamente afirmações semelhantes neste livro.) Usarei os nomes Razão Áurea, Seção Áurea, Número Áureo, Fi e o símbolo Φ livremente ao longo do livro, pois esses são os nomes mais freqüentemente encontrados na literatura matemática recreativa.
Algumas das maiores mentes matemáticas de todos os tempos, de Pitágoras e Euclides na Grécia antiga, passando pelo matemático italiano da Idade Média Leonardo de Pisa e o astrônomo renascentista Johannes Kepler, até figuras científicas do presente, como o físico de Oxford Roger Penrose, passaram horas sem fim trabalhando com esta simples razão e suas propriedades. Mas a fascinação pela Razão Áurea não se restringe aos matemáticos. Biólogos, artistas, músicos, historiadores, arquitetos, psicólogos e até místicos têm examinado e debatido as bases de sua ubiqüidade e seu apelo. De fato, provavelmente é correto dizer que a Razão Áurea tem inspirado pensadores de todas as disciplinas mais do que qualquer outro número na história da Matemática.
Uma imensa quantidade de pesquisa, principalmente do matemático canadense Roger Herz-Fischler (descrita no seu excelente livro Uma história matemática do número áureo), tem sido dedicada até à simples questão da origem do nome "Segmento Áureo". Dado o entusiasmo que essa razão tem gerado desde a Antiguidade, poderíamos pensar que o nome também tem origens antigas. De fato, alguns livros competentes de história da matemática, como O nascimento da matemática na era de Platão de François Lasserre, e Uma história da matemática, de Carl B. Boyers, situam a origem desse nome nos séculos XV e XVI, respectivamente. Mas não parece ser esse o caso. Pelo que posso dizer depois de examinar boa parte das tentativas de se achar dados históricos, essa expressão foi usada pela primeira vez pelo matemático alemão Martin Ohm (irmão do famoso físico Georg Simon Ohm, autor da Lei de Ohm no eletromagnetismo) na segunda edição, de 1835, do seu livro Die Reine Elementar-Mathematik (A matemática elementar pura). Ohm escreve em uma nota de rodapé: "Essa divisão de uma linha arbitrária em duas partes também costuma ser chamada de seção áurea." A linguagem de Ohm claramente nos deixa com a impressão de que não foi ele quem inventou a expressão, mas que, em vez disso, usou um nome comumente aceito. Porém, o fato de que ele não a utilizou na primeira edição do livro (publicada em 1826) pelo menos sugere que o nome "Razão Áurea" (ou, em alemão, "Goldene Schnitt") só ganhou popularidade por volta de 1830. A expressão pode ter sido usada oralmente antes disso, talvez em círculos não-matemáticos. Mas não há dúvida de que, após o livro de Ohm, a expressão "Seção Áurea" começou a aparecer freqüente e repetidamente na literatura alemã sobre matemática e história da arte. Ela pode ter feito sua estréia em inglês em um artigo de James Sully sobre estética, publicado na nona edição da Enciclopédia Britânica, em 1875. Sully faz referência à "interessante enquete experimental... instituída por (Gustav Theodor) Fechner — um físico e psicólogo pioneiro alemão do século XIX — sobre a suposta superioridade da ‘seção áurea’ como uma proporção visível". (Discutirei os experimentos de Fechner no Capítulo 7.) O uso mais antigo em inglês em contexto matemático parece ter ocorrido em um artigo intitulado "O Segmento Áureo" (de E. Ackermann), publicado em 1895 no American Mathematical Monthly e, mais ou menos na mesma época, no livro Introdução à álgebra, de 1898, do conhecido professor e escritor G. Chrystal (1851-1911). Apenas como curiosidade, deixe-me observar que a única definição de "Número Áureo" que aparece na edição de 1900 da enciclopédia francesa Nouveau Larousse Illustré é: "Um número usado para indicar cada um dos anos do ciclo lunar." Isto se refere à posição de um calendário anual dentro do ciclo de dezenove anos após o qual as fases da Lua retornam às mesmas datas. Evidentemente, a expressão levou um tempo maior para entrar na nomenclatura matemática francesa.
Mas por que tanto alvoroço em torno disso? O que faz desse número, ou proporção geométrica, algo tão interessante que deva merecer toda essa atenção?
A atratividade do "Número Áureo" origina-se, antes de mais nada, do fato de que ele tem um jeito quase sobrenatural de surgir onde menos se espera.
Pegue, por exemplo, uma maçã qualquer, fruta freqüentemente associada (provavelmente de modo equivocado) com a árvore do conhecimento que aparece de forma tão proeminente na descrição bíblica da queda da humanidade do Paraíso, e corte-a pela sua circunferência. Você irá encontrar as sementes da maçã arrumadas num padrão de estrela de cinco pontas ou pentagrama (Figura 3). Cada um dos cinco triângulos isósceles que formam as pontas do pentagrama tem a propriedade de que a razão entre o comprimento de seu lado mais comprido e do mais curto (a base) é igual à Razão Áurea, 1,618... Mas o leitor pode achar que isso talvez não seja assim tão surpreendente. Afinal, já que a Razão Áurea foi definida como uma proporção geométrica, talvez não devêssemos ficar espantados demais ao descobrir essa proporção em algumas formas geométricas.
Essa, porém, é só a ponta do iceberg. De acordo com a tradição budista, em um dos sermões do Buda ele não emitiu uma única palavra. Ele simplesmente segurava uma flor diante de sua platéia. O que uma flor pode nos ensinar? Uma rosa, por exemplo, quase sempre é considerada um símbolo de simetria, harmonia, amor e fragilidade naturais. Em Religião do homem, o poeta e filósofo indiano Rabindranath Tagore (1861-1941) escreve: "De alguma maneira, sentimos que, por intermédio de uma rosa, a linguagem do amor chega aos nossos corações." Suponha que você queira quantificar a aparência simétrica de uma rosa. Pegue uma rosa e a disseque para ver como suas pétalas se sobrepõem às suas antecessoras. Como descrevo no Capítulo 5, você vai descobrir que as posições das pétalas estão arrumadas de acordo com uma regra matemática que se baseia na Razão Áurea.
Passando agora ao reino animal, todos nós conhecemos a beleza impressionante das estruturas espirais das conchas de muitos moluscos, como o náutilo (Nautilus pompilius; Figura 4). De fato, o Shiva dançante dos mitos hindus segura um desses náutilos em suas mãos, como um símbolo de um dos instrumentos do início da criação. Essas conchas também têm inspirado muitas construções arquitetônicas. O arquiteto americano Frank Lloyd Wright (1869-1959), por exemplo, baseou o desenho do Museu Guggenheim de Nova York na estrutura do náutilo com câmaras. Dentro do museu, os visitantes sobem uma rampa em espiral, seguindo adiante quando suas capacidades imaginativas ficam saturadas pela arte que vêem, tal como o molusco constrói sucessivas câmaras espirais à medida que ocupa totalmente seu espaço físico. Descobriremos no Capítulo 5 que o crescimento das conchas espirais também obedece a um padrão que é orientado pela Razão Áurea.
A essa altura, não precisamos ser místicos de numerologia para começar a sentir um certo assombro por essa propriedade da Razão Áurea de surgir em situações e fenômenos que aparentemente não têm relação entre si. Além disso, como mencionei no começo deste capítulo, a Razão Áurea pode ser encontrada não só em fenômenos naturais mas também em uma variedade de objetos feitos pelo homem e em obras de arte. Por exemplo, na pintura de Salvador Dalí de 1955, "Sacramento da Última Ceia" (na National Gallery, Washington D.C.; Figura 5), as dimensões da pintura (aproximadamente 270 cm × 167 cm) estão numa Razão Áurea entre si. Talvez ainda mais importante, parte de um enorme dodecaedro (um sólido regular de 12 faces no qual cada face é um pentágono) é visto flutuando acima da mesa, engolindo-a. Como veremos no Capítulo 4, sólidos regulares (como o cubo) que podem ser perfeitamente encaixados numa esfera (com todos os seus vértices encostados nela), e o dodecaedro em particular, estão intimamente relacionados com a Razão Áurea. Por que Dalí decidiu exibir a Razão Áurea de maneira tão destacada nessa pintura? Sua observação de que "a Comunhão deve ser simétrica" apenas começa a responder a essa pergunta. Como mostrarei no Capítulo 7, a Razão Áurea figura (ou, pelo menos, afirma-se que ela figura) em obras de muitos outros artistas, arquitetos e desenhistas, e até em famosas composições musicais. Em termos gerais, a Razão Áurea foi usada em algumas dessas obras para que elas obtivessem o que poderíamos chamar de "efetividade visual (ou auditiva)". Uma das propriedades que contribuem para essa efetividade é a proporção — a relação de tamanho das partes entre si e com o todo. A história da arte mostra que, na longa busca pelo elusivo cânone da proporção "perfeita", a que poderia de algum modo conferir automaticamente qualidades estéticas agradáveis a todas as obras artísticas, a Razão Áurea provou ser a mais duradoura. Mas por quê?
Veja, edição 1978, 18 de outubro de 2006
Leia trecho do livro Razão Áurea, de Mario Livio
PRELÚDIO PARA UM NÚMERO
Inumeráveis são as maravilhas do mundo.
Sófocles (495-405 a.C.)
O famoso físico britânico lorde Kelvin (William Thomson; 1824-1907), em cuja homenagem foram batizados os graus da escala de temperatura absoluta, disse certa vez em uma conferência: "Quando não podemos expressar algo em números, nosso conhecimento é de um tipo escasso e insatisfatório." Kelvin estava, obviamente, se referindo ao conhecimento exigido para o avanço da ciência. Mas números e matemática têm a curiosa propensão a contribuir até para o entendimento de coisas que são, ou pelo menos parecem ser, extremamente distantes da ciência. Em O mistério de Marie Rogêt, de Edgar Allan Poe, o famoso detetive Auguste Dupin diz: "Nós fazemos da sorte uma questão de cálculo absoluto. Submetemos o não-procurado e o não-imaginado às fórmulas matemáticas das escolas." Num nível ainda mais simples, considere o seguinte problema que o leitor pode ter encontrado ao se preparar para uma festa: há uma barra de chocolate composta de doze pedaços; quantas quebras são necessárias para separar todos os pedaços? A resposta é, na verdade, mais simples do que você pode ter pensado e não envolve quase nenhum cálculo. Toda vez que se faz uma quebra, tem-se um pedaço a mais do que antes. Portanto, se você precisa terminar com doze pedaços, terá que quebrar onze vezes. (Verifique isso por si mesmo.) De modo mais geral, qualquer que seja o número de pedaços que formam a barra de chocolate, o número de quebras é sempre um a menos que o número de pedaços.
Mesmo que você não seja um apreciador de chocolate, perceberá que esse exemplo demonstra uma regra matemática simples que pode ser aplicada em muitas outras circunstâncias. Mas, além das propriedades, fórmulas e regras matemáticas (muitas das quais sempre acabamos esquecendo), existem alguns números especiais que são tão onipresentes que nunca deixam de nos surpreender. O mais famoso deles é o número Pi (π), que é a razão entre a circunferência de qualquer círculo e seu diâmetro. O valor de Pi, 3,14159..., tem fascinado muitas gerações de matemáticos. Embora tenha sido originalmente definido na geometria, o Pi aparece muito freqüente e inesperadamente no cálculo de probabilidades. Um exemplo famoso é conhecido como a Agulha de Buffon, em homenagem ao matemático francês George-Louis Leclerc, conde de Buffon (1707-1788), que, em 1777, propôs e resolveu o seguinte problema matemático. Leclerc perguntou: suponha que você tenha uma grande folha de papel no chão, pautada com linhas retas paralelas separadas por uma distância fixa. Uma agulha de comprimento exatamente igual ao espaçamento entre as linhas é jogada ao acaso sobre o papel. Qual é a probabilidade de que a agulha caia de tal maneira que cruze uma das linhas (por exemplo, como na Figura 1)? Surpreendentemente, a resposta é o número 2/π. Portanto, em princípio, você pode avaliar π repetindo esta experiência muitas vezes e observando em que fração do total de jogadas você obtém uma interseção. (Mas existem maneiras menos tediosas de encontrar o valor de Pi.) Hoje em dia, Pi se tornou uma palavra tão familiar que até inspirou o cineasta Darren Aronofsky a fazer, em 1998, um thriller intelectual com esse título.
Menos conhecido que o Pi é um outro número, o Fi (Φ), que, em muitos aspectos, é ainda mais fascinante. Suponha que eu lhe pergunte: o que o encantador arranjo de pétalas numa rosa vermelha, o famoso quadro "O Sacramento da Última Ceia", de Salvador Dalí, as magníficas conchas espirais de moluscos e a procriação de coelhos têm em comum? É difícil de acreditar, mas esses exemplos bem díspares têm em comum um certo número, ou proporção geométrica, conhecido desde a Antiguidade, um número que no século XIX recebeu o título honorífico de "Número Áureo", "Razão Áurea" e "Seção Áurea". Um livro publicado na Itália no começo do século XVI chegou a chamar essa razão de "Proporção Divina".
No dia-a-dia, usamos a palavra "proporção" ou para a relação comparativa entre partes de coisas com respeito a tamanho ou quantidade, ou quando queremos descrever uma relação harmoniosa entre diferentes partes. Na matemática, o termo "proporção" é usado para descrever uma igualdade do tipo: nove está para três assim como seis está para dois. Como veremos, a Razão Áurea nos fornece uma intrigante mistura das duas acepções, já que, embora seja matematicamente definida, considera-se que revela qualidades agradavelmente harmoniosas.
A primeira definição clara do que mais tarde se tornou conhecido como a Razão Áurea foi dada por volta de 300 a.C. pelo fundador da geometria como sistema dedutivo formalizado, Euclides de Alexandria. Retornaremos a Euclides e suas fantásticas realizações no Capítulo 4, mas agora quero observar apenas que é tão grande a admiração inspirada por Euclides que, em 1923, a poetisa Edna St. Vincent Millay escreveu um poema intitulado "Somente Euclides viu a Beleza Nua". Na verdade, até as notas de aula de Millay do seu curso de geometria euclidiana foram preservadas. Euclides definiu uma proporção derivada da simples divisão de uma linha no que ele chamou de sua "razão extrema e média". Nas palavras de Euclides:
Diz-se que uma linha reta é cortada na razão extrema e média quando, assim como a linha toda está para o maior segmento, o maior segmento está para o menor.
A C B
Figura 2
Em outras palavras, se observarmos a Figura 2, a linha AB certamente é maior que o segmento AC. Ao mesmo tempo, o segmento AC é maior que o CB. Se a razão do comprimento de AC para o comprimento de CB for igual à razão de AB para AC, então a linha foi cortada na razão extrema e média, ou numa Razão Áurea.
Quem poderia imaginar que essa divisão de linha aparentemente tão inocente, que Euclides definiu com objetivos puramente geométricos, poderia ter conseqüências em temas que vão do arranjo de folhas em botânica à estrutura de galáxias que contêm bilhões de estrelas, ou da matemática às artes? A Razão Áurea nos fornece, portanto, um maravilhoso exemplo do sentimento de total espanto que o famoso físico Albert Einstein (1879-1955) valorizava tanto. Nas palavras do próprio Einstein: "A melhor coisa que podemos vivenciar é o mistério. Ele é a emoção fundamental que está no berço da ciência e da arte verdadeiras. Aquele que não o conhece e não mais se maravilha, não sente mais o deslumbramento, vale o mesmo que um morto, que uma vela apagada."
Como veremos calculado neste livro, o valor exato da Razão Áurea (a razão de AC para CB na Figura 2) é o número que nunca termina e nunca se repete 1,6180339887..., e esses números que nunca terminam têm intrigado os homens desde a Antiguidade. Diz uma história que quando o matemático grego Hipasos de Metaponto descobriu, no século V a.C., que a Razão Áurea é um número que não é nem inteiro (como os familiares 1, 2, 3...) nem razão de dois números inteiros (como as frações 1/2, 2/3, 3/4,..., conhecidos coletivamente como números racionais), isso deixou totalmente chocados os outros seguidores do famoso matemático Pitágoras (os pitagóricos). A visão de mundo dos pitagóricos (que descreveremos em detalhe no Capítulo 2) era baseada numa admiração extrema pelos arithmos — as propriedades intrínsecas dos números inteiros ou suas razões — e seu suposto papel no Cosmo. A descoberta de que existiam números como a Razão Áurea que continuam para sempre sem exibir qualquer repetição ou padrão causou uma verdadeira crise filosófica. Reza a lenda que, aturdidos com a estupenda descoberta, os pitagóricos sacrificaram, apavorados, cem bois, embora isso pareça ser bastante improvável, já que os pitagóricos eram estritamente vegetarianos. Devo enfatizar neste ponto que muitas dessas histórias são baseadas em material histórico insuficientemente documentado. A data exata da descoberta de números que não são inteiros nem frações, conhecidos como números irracionais, não é conhecida com grau algum de certeza. Mesmo assim, alguns pesquisadores situam a descoberta no século V a.C., o que é pelo menos coerente com a datação das histórias que acabamos de contar. O que é claro é que os pitagóricos basicamente acreditavam que a existência de tais números era tão horrível que devia (a existência) representar algum tipo de erro cósmico, algo que deveria ser suprimido e guardado em segredo.
O fato de a Razão Áurea não poder ser expressa como uma fração (como um número racional) significa simplesmente que a razão entre os dois comprimentos AC e CB na Figura 2 não pode ser expressa como uma fração. Em outras palavras, por mais que procuremos, jamais encontraremos uma medida cujo valor, multiplicado, digamos, por 31, coincida com a medida de AC, e multiplicado por 19 coincida com a de CB. Dois comprimentos com esta propriedade são chamados de incomensuráveis. A descoberta de que a Razão Áurea é um número irracional, portanto, era, ao mesmo tempo, a descoberta da incomensurabilidade. Em Sobre a vida pitagórica (cerca de 300 d.C.), o filósofo e historiador Iâmblico, um descendente de uma nobre família da Síria, descreve a violenta reação a essa descoberta:
"Eles diziam que o primeiro [humano] a revelar a natureza da comensurabilidade e da incomensurabilidade para aqueles que não eram dignos de compartilhar a teoria era tão odiado que não só foi banido da associação e do modo de vida [pitagórico], como também teve seu túmulo construído, como se o antigo colega tivesse sido apartado da vida entre o gênero humano."
Na literatura matemática profissional, o símbolo habitual para a Razão Áurea é a letra grega tau (t, do grego tomή, to-mž, que significa "o corte" ou "a seção"). Entretanto, no início do século XX, o matemático americano Mark Barr deu à razão o nome de Fi (Φ), a primeira letra grega no nome de Fídias, o grande escultor grego que viveu entre 490 e 430 a.C. As maiores realizações de Fídias foram o "Partenon de Atenas" e o "Zeus" no templo de Olímpia. Tradicionalmente, considera-se também que ele foi o responsável por outras esculturas do Partenon, embora seja bastante provável que muitas delas, na verdade, tenham sido feitas por seus alunos e assistentes. Barr decidiu homenagear o escultor porque alguns historiadores da arte sustentavam que Fídias fazia uso freqüente e meticuloso da Razão Áurea nas suas esculturas. (Examinaremos detalhadamente afirmações semelhantes neste livro.) Usarei os nomes Razão Áurea, Seção Áurea, Número Áureo, Fi e o símbolo Φ livremente ao longo do livro, pois esses são os nomes mais freqüentemente encontrados na literatura matemática recreativa.
Algumas das maiores mentes matemáticas de todos os tempos, de Pitágoras e Euclides na Grécia antiga, passando pelo matemático italiano da Idade Média Leonardo de Pisa e o astrônomo renascentista Johannes Kepler, até figuras científicas do presente, como o físico de Oxford Roger Penrose, passaram horas sem fim trabalhando com esta simples razão e suas propriedades. Mas a fascinação pela Razão Áurea não se restringe aos matemáticos. Biólogos, artistas, músicos, historiadores, arquitetos, psicólogos e até místicos têm examinado e debatido as bases de sua ubiqüidade e seu apelo. De fato, provavelmente é correto dizer que a Razão Áurea tem inspirado pensadores de todas as disciplinas mais do que qualquer outro número na história da Matemática.
Uma imensa quantidade de pesquisa, principalmente do matemático canadense Roger Herz-Fischler (descrita no seu excelente livro Uma história matemática do número áureo), tem sido dedicada até à simples questão da origem do nome "Segmento Áureo". Dado o entusiasmo que essa razão tem gerado desde a Antiguidade, poderíamos pensar que o nome também tem origens antigas. De fato, alguns livros competentes de história da matemática, como O nascimento da matemática na era de Platão de François Lasserre, e Uma história da matemática, de Carl B. Boyers, situam a origem desse nome nos séculos XV e XVI, respectivamente. Mas não parece ser esse o caso. Pelo que posso dizer depois de examinar boa parte das tentativas de se achar dados históricos, essa expressão foi usada pela primeira vez pelo matemático alemão Martin Ohm (irmão do famoso físico Georg Simon Ohm, autor da Lei de Ohm no eletromagnetismo) na segunda edição, de 1835, do seu livro Die Reine Elementar-Mathematik (A matemática elementar pura). Ohm escreve em uma nota de rodapé: "Essa divisão de uma linha arbitrária em duas partes também costuma ser chamada de seção áurea." A linguagem de Ohm claramente nos deixa com a impressão de que não foi ele quem inventou a expressão, mas que, em vez disso, usou um nome comumente aceito. Porém, o fato de que ele não a utilizou na primeira edição do livro (publicada em 1826) pelo menos sugere que o nome "Razão Áurea" (ou, em alemão, "Goldene Schnitt") só ganhou popularidade por volta de 1830. A expressão pode ter sido usada oralmente antes disso, talvez em círculos não-matemáticos. Mas não há dúvida de que, após o livro de Ohm, a expressão "Seção Áurea" começou a aparecer freqüente e repetidamente na literatura alemã sobre matemática e história da arte. Ela pode ter feito sua estréia em inglês em um artigo de James Sully sobre estética, publicado na nona edição da Enciclopédia Britânica, em 1875. Sully faz referência à "interessante enquete experimental... instituída por (Gustav Theodor) Fechner — um físico e psicólogo pioneiro alemão do século XIX — sobre a suposta superioridade da ‘seção áurea’ como uma proporção visível". (Discutirei os experimentos de Fechner no Capítulo 7.) O uso mais antigo em inglês em contexto matemático parece ter ocorrido em um artigo intitulado "O Segmento Áureo" (de E. Ackermann), publicado em 1895 no American Mathematical Monthly e, mais ou menos na mesma época, no livro Introdução à álgebra, de 1898, do conhecido professor e escritor G. Chrystal (1851-1911). Apenas como curiosidade, deixe-me observar que a única definição de "Número Áureo" que aparece na edição de 1900 da enciclopédia francesa Nouveau Larousse Illustré é: "Um número usado para indicar cada um dos anos do ciclo lunar." Isto se refere à posição de um calendário anual dentro do ciclo de dezenove anos após o qual as fases da Lua retornam às mesmas datas. Evidentemente, a expressão levou um tempo maior para entrar na nomenclatura matemática francesa.
Mas por que tanto alvoroço em torno disso? O que faz desse número, ou proporção geométrica, algo tão interessante que deva merecer toda essa atenção?
A atratividade do "Número Áureo" origina-se, antes de mais nada, do fato de que ele tem um jeito quase sobrenatural de surgir onde menos se espera.
Pegue, por exemplo, uma maçã qualquer, fruta freqüentemente associada (provavelmente de modo equivocado) com a árvore do conhecimento que aparece de forma tão proeminente na descrição bíblica da queda da humanidade do Paraíso, e corte-a pela sua circunferência. Você irá encontrar as sementes da maçã arrumadas num padrão de estrela de cinco pontas ou pentagrama (Figura 3). Cada um dos cinco triângulos isósceles que formam as pontas do pentagrama tem a propriedade de que a razão entre o comprimento de seu lado mais comprido e do mais curto (a base) é igual à Razão Áurea, 1,618... Mas o leitor pode achar que isso talvez não seja assim tão surpreendente. Afinal, já que a Razão Áurea foi definida como uma proporção geométrica, talvez não devêssemos ficar espantados demais ao descobrir essa proporção em algumas formas geométricas.
Essa, porém, é só a ponta do iceberg. De acordo com a tradição budista, em um dos sermões do Buda ele não emitiu uma única palavra. Ele simplesmente segurava uma flor diante de sua platéia. O que uma flor pode nos ensinar? Uma rosa, por exemplo, quase sempre é considerada um símbolo de simetria, harmonia, amor e fragilidade naturais. Em Religião do homem, o poeta e filósofo indiano Rabindranath Tagore (1861-1941) escreve: "De alguma maneira, sentimos que, por intermédio de uma rosa, a linguagem do amor chega aos nossos corações." Suponha que você queira quantificar a aparência simétrica de uma rosa. Pegue uma rosa e a disseque para ver como suas pétalas se sobrepõem às suas antecessoras. Como descrevo no Capítulo 5, você vai descobrir que as posições das pétalas estão arrumadas de acordo com uma regra matemática que se baseia na Razão Áurea.
Passando agora ao reino animal, todos nós conhecemos a beleza impressionante das estruturas espirais das conchas de muitos moluscos, como o náutilo (Nautilus pompilius; Figura 4). De fato, o Shiva dançante dos mitos hindus segura um desses náutilos em suas mãos, como um símbolo de um dos instrumentos do início da criação. Essas conchas também têm inspirado muitas construções arquitetônicas. O arquiteto americano Frank Lloyd Wright (1869-1959), por exemplo, baseou o desenho do Museu Guggenheim de Nova York na estrutura do náutilo com câmaras. Dentro do museu, os visitantes sobem uma rampa em espiral, seguindo adiante quando suas capacidades imaginativas ficam saturadas pela arte que vêem, tal como o molusco constrói sucessivas câmaras espirais à medida que ocupa totalmente seu espaço físico. Descobriremos no Capítulo 5 que o crescimento das conchas espirais também obedece a um padrão que é orientado pela Razão Áurea.
A essa altura, não precisamos ser místicos de numerologia para começar a sentir um certo assombro por essa propriedade da Razão Áurea de surgir em situações e fenômenos que aparentemente não têm relação entre si. Além disso, como mencionei no começo deste capítulo, a Razão Áurea pode ser encontrada não só em fenômenos naturais mas também em uma variedade de objetos feitos pelo homem e em obras de arte. Por exemplo, na pintura de Salvador Dalí de 1955, "Sacramento da Última Ceia" (na National Gallery, Washington D.C.; Figura 5), as dimensões da pintura (aproximadamente 270 cm × 167 cm) estão numa Razão Áurea entre si. Talvez ainda mais importante, parte de um enorme dodecaedro (um sólido regular de 12 faces no qual cada face é um pentágono) é visto flutuando acima da mesa, engolindo-a. Como veremos no Capítulo 4, sólidos regulares (como o cubo) que podem ser perfeitamente encaixados numa esfera (com todos os seus vértices encostados nela), e o dodecaedro em particular, estão intimamente relacionados com a Razão Áurea. Por que Dalí decidiu exibir a Razão Áurea de maneira tão destacada nessa pintura? Sua observação de que "a Comunhão deve ser simétrica" apenas começa a responder a essa pergunta. Como mostrarei no Capítulo 7, a Razão Áurea figura (ou, pelo menos, afirma-se que ela figura) em obras de muitos outros artistas, arquitetos e desenhistas, e até em famosas composições musicais. Em termos gerais, a Razão Áurea foi usada em algumas dessas obras para que elas obtivessem o que poderíamos chamar de "efetividade visual (ou auditiva)". Uma das propriedades que contribuem para essa efetividade é a proporção — a relação de tamanho das partes entre si e com o todo. A história da arte mostra que, na longa busca pelo elusivo cânone da proporção "perfeita", a que poderia de algum modo conferir automaticamente qualidades estéticas agradáveis a todas as obras artísticas, a Razão Áurea provou ser a mais duradoura. Mas por quê?